A Balanced Finite Element Method for Singularly Perturbed Reaction-Diffusion Problems
نویسندگان
چکیده
Consider the singularly perturbed linear reaction-diffusion problem −ε2Δu+ bu = f in Ω ⊂ Rd, u = 0 on ∂Ω, where d ≥ 1, the domain Ω is bounded with (when d ≥ 2) Lipschitzcontinuous boundary ∂Ω, and the parameter ε satisfies 0 < ε 1. It is argued that for this type of problem, the standard energy norm v → [ε|v|1+‖v‖0] is too weak a norm to measure adequately the errors in solutions computed by finite element methods: the multiplier ε2 gives an unbalanced norm whose different components have different orders of magnitude. A balanced and stronger norm is introduced, then for d ≥ 2 a mixed finite element method is constructed whose solution is quasioptimal in this new norm. For a problem posed on the unit square in R2, an error bound that is uniform in ε is proved when the new method is implemented on a Shishkin mesh. Numerical results are presented to show the superiority of the new method over the standard mixed finite element method on the same mesh for this singularly perturbed problem.
منابع مشابه
A first-order system Petrov–Galerkin discretization for a reaction–diffusion problem on a fitted mesh
We consider the numerical solution, by a Petrov–Galerkin finite-element method, of a singularly perturbed reaction–diffusion differential equation posed on the unit square. In Lin & Stynes (2012, A balanced finite element method for singularly perturbed reaction-diffusion problems. SIAM J. Numer. Anal., 50, 2729–2743), it is argued that the natural energy norm, associated with a standard Galerk...
متن کاملNumerical method for singularly perturbed fourth order ordinary differential equations of convection-diffusion type
In this paper, we have proposed a numerical method for singularly perturbed fourth order ordinary differential equations of convection-diffusion type. The numerical method combines boundary value technique, asymptotic expansion approximation, shooting method and finite difference method. In order to get a numerical solution for the derivative of the solution, the given interval is divided in...
متن کاملOn the Finite Element Method for Singularly Perturbed Reaction-Diffusion Problems
Second order elliptic boundary value problems which are allowed to degenerate into zero order equations are considered. The behavior of the ordinary Galerkin finite element method without special arrangements to treat singularities is studied as the problem ranges from true second order to singularly perturbed.
متن کاملA numerical study on the finite element solution of singularly perturbed systems of reaction-diffusion problems
We consider the approximation of singularly perturbed systems of reaction–diffusion problems, with the finite element method. The solution to such problems contains boundary layers which overlap and interact, and the numerical approximation must take this into account in order for the resulting scheme to converge uniformly with respect to the singular perturbation parameters. In this article we...
متن کاملSuperconvergence of Conforming Finite Element for Fourth-Order Singularly Perturbed Problems of Reaction Diffusion Type in 1D
We consider conforming finite element approximation of fourth-order singularly perturbed problems of reaction diffusion type. We prove superconvergence of standard C1 finite element method of degree p on a modified Shishkin mesh. In particular, a superconvergence error bound of ( N−1ln(N + 1))p in a discrete energy norm is established. The error bound is uniformly valid with respect to the sing...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Numerical Analysis
دوره 50 شماره
صفحات -
تاریخ انتشار 2012